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• Background and Aims Various studies and conservationist reports have warned about the contraction of the 
last subtropical Afro-Macaronesian forests. These relict vegetation zones have been restricted to a few oceanic and 
continental islands around the edges of Africa, due to aridification. Previous studies on relict species have gener-
ally focused on glacial effects on narrow endemics; however, little is known about the effects of aridification on 
the fates of previously widespread subtropical lineages.
• Methods Nuclear microsatellites and ecological niche modelling were used to understand observed patterns of 
genetic diversity in two emblematic species, widely distributed in these ecosystems: Canarina eminii (a palaeoen-
demic of the eastern Afromontane forests) and Canarina canariensis (a palaeoendemic of the Canarian laurel 
forests). The software DIYABC was used to test alternative demographic scenarios and an ensemble method was 
employed to model potential distributions of the selected plants from the end of the deglaciation to the present.
• Key Results All the populations assessed experienced a strong and recent population decline, revealing that 
locally widespread endemisms may also be alarmingly threatened.
• Conclusions The detected extinction debt, as well as the extinction spiral to which these populations are sub-
jected, demands urgent conservation measures for the unique, biodiversity-rich ecosystems that they inhabit.

Key words: Islands, nuclear microsatellites, subtropical flora, decline, aridification, extinction, genetic 
conservation.

INTRODUCTION

Rare species are defined as those characterized by small popu-
lation sizes, narrow geographic distributions and high habitat 
specificity, or any combination of these criteria (Rabinowitz, 
1981). These species often display low genetic diversity, which 
makes them vulnerable to stochastic demographic phenomena 
(Kruckeberg and Rabinowitz, 1985; Hewitt, 2004). However, this 
relationship between rarity and genetic diversity is not an axiom: 
rare species may present high levels of genetic diversity (Stebbins, 
1980; Gitzendanner and Soltis, 2000; Pérez de Paz and Caujapé-
Castells, 2013; García-Verdugo et al., 2015), whereas some wide-
spread and common species, such as exotic invasive plants, may 
exhibit low levels of genetic diversity (Tsutsui et al., 2000).

Relict species are rare species whose distribution ranges have 
been reduced to a few populations due to different processes 
(e.g. aridification), but with a degree of threat that gives them a 
great value in conservation biology (Habel and Assmann, 2009). 
Especially interesting are palaeoendemics, i.e. relict species that 

have become rare due to widespread extinction in their original 
distribution range (Stebbins and Major, 1965), and which fre-
quently act as reservoirs of phylogenetic exclusivity, as the only 
surviving representatives of larger clades (Cronk, 1992; Faith, 
1992). Biologists often characterize these species as ‘living fos-
sils’, an irreplaceable heritage in the Tree of Life (Grandcolas 
et al., 2014). The need to conserve these rare and relict species 
and their habitat-restricted communities has increased in the 
current context of rapid human-induced climate change.

Studies on relict species have generally focused on glacial 
relicts, which are now constrained to some reduced ranges in 
mountain peaks or high latitudes (Petit et  al., 2003; Hewitt, 
2004). By contrast, relict species that have become rare as a 
result of aridification have received far less attention. Genetic 
studies on these species, however, are of particular relevance 
because they may provide insights into the capacity for resil-
ience and the foreseeable evolutionary fates of species subject 
to global warming.
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Here we focus on one such taxon: the angiosperm plant genus 
Canarina, belonging to the bellflower family, Campanulaceae 
(tribe Platycodoneae). This genus comprises only three species 
separated by >7000 km across the Sahara desert: C. canariensis, 
associated with the endemic laurel forests of the Canary Islands, 
and C. eminii and C. abyssinica, which are endemic to the relict 
Afromontane forests of East Africa. Canarina is the only African 
representative of Platycodoneae, an early-diverging tribe within 
family Campanulaceae (Roquet et al., 2008), while the remaining 
members of the tribe are distributed throughout Central and East 
Asia (Wang et al., 2013). Thus, Canarina complies with the criter-
ion of phylogenetic exclusivity in a relict rare species (Faith, 1992).

Mairal et al. (2015a) reconstructed the biogeographic history 
of Canarina and showed that ancestors of this genus migrated 
from Asia to East Africa in the Middle Miocene. They linked 
the disjunct sister-group relationship between C.  canariensis 
and C. eminii (dated ~7–6 Ma) to large-scale extinction and a 
gradual aridification process that would have started in North 
Africa in the Late Miocene (Sepulchre et  al., 2006; Senut 
et al., 2009). This was followed by cycles of contraction and 
expansion affecting both subtropical and tropical taxa (Maley, 
2000; Bonnefille, 2011), in which mountainous areas in the 
Sahara served as refuges during arid periods (Osborne et al., 
2008). This Afro-Macaronesian biogeographic pattern has been 
observed in many other angiosperm genera, and is known as 
the Rand Flora pattern (Sanmartín et al., 2010; Pokorny et al., 
2015; Mairal et al., 2017a). Thus, Canarina also fulfils the cri-
terion of a palaeoendemic relict – the palaeoendemic character 
can also be seen in the Canarina populations of both species, 
in which reservoirs of ancient genetic diversity appear in the 
oldest massifs and palaeo-islands (Mairal et al., 2015b, 2017b).

Rare or relictual species are also generally characterized by 
high habitat specificity (Kruckeberg and Rabinowitz, 1985), 
either because the species have low environmental tolerance or 
a narrow niche, or because their habitats are currently under 
contraction. The habitats now occupied by Canarina (the 
Canarian laurel forest and the isolated patches of subtropical 
Afromontane forest in East African ‘sky islands’) have often 
been interpreted as the last remnants of a more humid vegetation 
that extended over the Mediterranean Basin and North Africa 
during the Early–Middle Miocene (Heald, 1951; Axelrod and 
Raven, 1978; White, 1983; Bramwell, 1985; McCormack et al., 
2009; Fernández-Palacios et  al., 2011); but see Kondraskov 
et al. (2015) for a different view on the relict character of the 
Canarian laurel forests. Plant lineages that took shelter in these 
enclaves have acquired a high degree of relictualism and con-
tribute substantially to the exceptional endemicity of these areas 
(Fjeldså and Lovett, 1997; Juan et al., 2000), which are now 
classified as biodiversity hotspots; i.e. biogeographic regions 
whose great biodiversity is threatened by habitat loss (Myers 
et al., 2000; Mittermeier et al., 2004).

Both C. eminii and C. canariensis have widespread but dis-
junct distribution ranges and fulfil Rabinowitz’s (1981) ‘large 
and narrow’ criterion of rarity: species that are constantly sparse 
in a specific habitat but over a large range. Canarina canar-
iensis is a terrestrial herb that propagates by seeds and shoots 
from its tuber (Bramwell and Bramwell, 2001); it occurs in the 
endemic Canarian laurel forests and (more rarely) in the adja-
cent thermophilous forests in the central and western islands 
of the Canarian Archipelago. Canarina eminii propagates from 

a long and thick root and grows as a terrestrial or (mainly) as 
an epiphyte of Afromontane forest trees (Podocarpus, Hagenia, 
Conopharyngia; Hedberg, 1961) in East Africa, from Ethiopia 
in the north to Malawi in the south (Fig. 1).

The steep topography and patchy distribution of the Eastern 
African forests (divided by deserts, savannahs and cultivated 
lands) and the deep ocean floor that lies between islands in 
the Canarian Archipelago have added to a high degree of geo-
graphic and ecological isolation (Fig. 1B), manifested by high 
genetic differentiation among populations and a marked geo-
graphic structure (Mairal et  al., 2015a,b, 2017a). This great 
interpopulational diversity is threatened in C. eminii by human 
activities, such as logging and forest clearance (fires) linked to 
a rapid growth of the human population and agricultural devel-
opment (Hedberg, 1961; Alemayehu, 2006), which have con-
tributed to further fragmentation and isolation among forest 
patches (Fahrig, 2003). In the case of C. canariensis, although 
big patches of the laurisilva are currently under legal protec-
tion, this forest type has experienced a strong contraction dur-
ing the last two centuries with respect to its estimated original 
range, due mostly to agricultural practices (Fernández-Palacios 
et al., 2011; but see de Nascimento et al., 2015 for an alterna-
tive view of Gran Canaria’s forests).

In this study, we used molecular and ecological niche model-
ling approaches to explore the effects of historical climate change 
and recent anthropogenic activity on the demographic evolution of 
C. canariensis and C. eminii. We developed new molecular markers 
from a library of nuclear microsatellites (SSRs), and used these to 
document levels of genetic diversity within and among populations. 
We also tested the alternative scenarios of population dynamics of 
(1) constant size, (2) bottleneck, (3) demographic expansion and 
(4) decline, using approximate Bayesian computation techniques 
(Beaumont, 2010) based on SSR data. Finally, we employed eco-
logical niche modelling to reconstruct the climatic requirements 
(niche breadth) of African and Canarian populations and project 
them back into the past (Last Glacial Maximum, Holocene) to 
understand the impact of recent climate change on the geographic 
distribution of populations. If climate change since the end of the 
deglaciation or human activities have driven the retreat of these 
forests, we should find a genetic signal linked to a recent demo-
graphic decrease; conversely, this signal would not appear if the 
demographic processes were older. A demographic decline would 
confirm the suspicions about the serious state of the threat to these 
forest patches. Accordingly, our main goals are: (1) to compare lev-
els of population genetic diversity between these two species, and 
with those estimated by other markers [chloroplast sequences and 
amplified fragment length polymorphisms (AFLPs); Mairal et al., 
2015b, 2017b]; (2) to search for the presence of population decline 
or bottlenecks that may indicate ongoing loss of genetic diversity; 
(3) to relate population dynamics to changes in the potential geo-
graphic distribution of Canarina populations over time; and (4) to 
provide a genetic basis to enable the design of suitable strategies for 
the genetic conservation of these taxa.

MATERIALS AND METHODS

Plant material, population sampling and DNA sequencing

Several sampling field campaigns were performed in East 
Africa and the Canary Islands (2009–14), which led to the 
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collection of fresh material from 223 individuals in 24 differ-
ent populations of Canarina: 17 of C. canariensis (N = 159) 
and seven of C.  eminii (N  =  64) (Table  1). For the largest 
populations, a minimum of ten samples was collected through 
the entire area of occupation to reduce the possible inflation 
in the genetic structure descriptors (Caujapé-Castells, 2010). 
DNA was extracted from silica-gel-dried leaves using the 
DNeasy Plant Mini Kit (Qiagen, CA, USA). The quality of 
DNA extractions was checked on 1 % agarose gels, and DNA 
concentration was measured using a NanoDrop spectropho-
tometer. All samples were diluted to 10 ng μL−1 prior to PCR 
amplification.

Development of nuclear microsatellite markers and scoring

A microsatellite library was developed for C.  canarien-
sis at the Savannah River Ecology Laboratory (University of 
Georgia). The extracted plant DNA was enriched using mag-
netic streptavidin beads and biotinylated oligonucleotides 

representing CT and GT repetitions. The library was sequenced 
using a Titanium Sequencing Kit (Roche Life Sciences) on the 
Roche 454 GS-FLX Titanium platform. We selected tri- and 
tetra-nucleotide repetition motifs to reduce the risk of misinter-
preting as homozygotes the heterozygotes with alleles differing 
by a single repeat. Primer design and PCR amplifications were 
performed in the laboratories of Jardín Botánico Canario ‘Viera 
y Clavijo’, Unidad Asociada CSIC del Cabildo de Gran Canaria 
(JBCVC-CSIC).

We selected and tested 26 primer pairs for C. canariensis, 
which were also tested for cross-amplification in C.  eminii. 
Fifteen loci were discarded because of amplification failure 
in most samples, poor electrophoretic profiles or low levels of 
variation. Finally, 11 SSR loci were retained for C. canarien-
sis and seven for C.  eminii; these showed good quality pro-
files and were used to genotype all sampled individuals from 
both species. DNA amplification (PCR) was performed in 
a final volume of 20 μL, containing 1 μL of DNA, 12.55 μL 
of sterilized water, 1.5  μL of 10× buffer, 0.8  μL of MgCl2+, 
0.3 μL of dNTP, 1 μL of BSA, 0.25 μL Taq DNA polymerase 

Fig. 1. Distribution and scheme of the insular systems inhabited by the studied species. (A) Geographic distribution of C. canariensis in the Canary Islands (left) 
and C. eminii in the Afromontane forests (right). The distribution areas are shaded in purple. Sampled populations are represented with black dots accompanied by 
a population code number, as specified in Table 1. (B) Schematic representations of the insular systems and the subtropical vegetation belts inhabited by the studied 

species: oceanic islands and laurisilva forests for C. canariensis (left) and sky islands and Afromontane forests for C. eminii (right).
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(Bioline), 1 μL of forward primer (0.2 μm), 0.8 μL of reverse 
primer (5 μm) and 0.8 μL of reverse-tailed primer. PCR prod-
ucts were labelled using the fluorescent  dyes FAM, VIC, 
NED or PET (labels according to the original kit of Applied 
Biosystems), and an additional 19-bp fluorescently labelled 
M13 primer (5′-CACGACGTTGTAAAACGAC-3′) accord-
ing to the methods of Boutin-Ganache et  al., (2001). A  tail 
sequence (5′-GTGTCTT-3′) was added to the 5′ end of the 
reverse primer to improve adenylation (addition of AMP) and 
to facilitate genotyping. Samples were incubated in a Verity 
96 thermocycler using the following conditions: 2  min of 
denaturation at 94.4  °C, 30 cycles of 30  s of denaturation at 
94.4 °C, 40 s at different annealing temperatures for each locus 
(Supplementary Data Table S1), 30 s of elongation at 72 °C and 
final extension for 8 min at 72 °C. Reactions were separated on 
5 % polyacrylamide gels. The amplified fragments were scored 
using GeneMapper 4.0 software (Applied Biosystems) with 
the LIZ 500 size standard. We combined automatic detection 
of each allele with visual inspection of each sample, following 
Dewoody (2006) to reduce scoring errors. Finally, we identified 
peak profiles for each locus and allele, and we assigned a geno-
type to each individual.

To detect possible genotyping errors (stuttering, null alleles 
and allelic dropout), we analysed the genotyping matrix with 
the programs MICRO-CHECKER 2.2.1. (Van Oosterhout 
et  al., 2004) and INEst 1.0 (Chybicki and Burczyk, 2009). 
A single locus in C. eminii and one locus in C. canariensis 
displayed null alleles with frequencies >0.05 and high FIS 
values, and were therefore removed from further analyses. 

Other loci were excluded due to low quality of electropho-
retograms, especially in C.  eminii, where several loci were 
removed due to the effect of cross-amplification. The final 
data matrices contained nine loci for C. canariensis and six 
loci for C. eminii.

Genetic diversity and population structure

Deviations from Hardy–Weinberg equilibrium and link-
age disequilibrium were tested using POPGENE version 4.2 
(Yeh et  al., 1997). Standard genetic diversity statistics, such 
as expected heterozygosity (He), were calculated using the 
software Arlequin (Excoffier et  al., 2005). To account for 
sample size variation among populations, we estimated the 
allelic richness and the number of private alleles using rar-
efaction analysis implemented in the software HP-Rare v.1.0 
(Kalinowski, 2005). To identify the signal of old or severe 
bottlenecks, we used Garza and Williamson’s M-ratio test 
(GW test) (2001), which is better suited to the detection of 
these events than methods based on the deficit of rare alleles 
(Williamson-Natesan, 2005). The GW test detects the presence 
of bottlenecks by determining the ratio between the number 
of alleles and the allele size range, according to the statistic 
M = k/r, where k is the number of alleles and r = Smax − Smin + 1,  
where S is allele size.

To detect the genetic composition of populations, we used 
the Bayesian clustering method implemented in STRUCTURE 
v.2.3 (Pritchard et al., 2000). This approach assumes that loci 

Table 1. Genetic diversity descriptors and tests used for each of the populations of C. canariensis and C. eminii. For Tenerife, names of 
paleo-islands are indicated in parentheses

Population N A He (s.e.) Npa
M

Canarina eminii, continental islands 
 1. Gifta Abyssinian massif 8 1.58 0.167 (0.220) 0.00 0.442
 2. Dembecha Abyssinian massif 8 1.80 0.244 (0.270) 0.07 0.349
 3. Yirga Harar massif 8 2.00 0.301 (0.349) 0.17 0.081
 4. Harenna Harar massif 9 2.28 0.287 (0.218) 0.33 0.299
 5. Aberdare Aberdare Mountains 8 1.83 0.382 (0.222) 0.01 0.128
 6. Elgon Mount Elgon 13 1.99 0.339 (0.295) 0.01 0.123
 7. Rwenzori Rwenzori Mountains 10 2.24 0.410 (0.272) 0.01 0.161
Canarina canariensis, oceanic islands
 8. Cueva Corcho Gran Canaria 8 1.96 0.305 (0.34) 0.14 0.111
 9. Tilos de Moya Gran Canaria 12 2.04 0.325 (0.27) 0.06 0.158
 10. El Sao Gran Canaria 10 1.84 0.282 (0.26) 0.00 0.229
 11. Andenes de Guayedra Gran Canaria 12 1.72 0.292 (0.25) 0.00 0.224
 12. Camino Chamuscadas Tenerife (Anaga) 10 4.07 0.417 (0.29) 0.37 0.235
 13. El Bailadero Tenerife (Anaga) 11 3.89 0.378 (0.31) 0.03 0.164
 14. Tope del Carnero Tenerife (Anaga) 7 3.94 0.412(0.29) 0.11 0.229
 15. Teno Alto Tenerife (Teno) 8 2.37 0.400 (0.26) 0.07 0.171
 16. El Palmar Tenerife (Teno) 8 2.54 0.485 (0.27) 0.25 0.198
 17. Barranco del Infierno Tenerife (Adeje) 11 2.50 0.489 (0.23) 0.00 0.184
 18. Barranco de Badajoz Tenerife 5 3.50 0.316 (0.35) 0.02 0.178
 19. Barranco Ruiz Tenerife 6 2.20 0.411 (0.22) 0.02 0.158
 20. Tamargada Gomera 13 1.67 0.235 (0.26) 0.04 0.250
 21. Los Tilos La Palma 10 2.26 0.394 (0.25) 0.14 0.202
 22. Barranco del Agua La Palma 10 2.02 0.332 (0.24) 0.01 0.188
 23. Barranco La Barata La Palma 4 1.88 0.365 (0.26) 0.00 0.258
 24. El Hierro El Hierro 12 2.24 0.415 (0.20) 0.17 0.183

A, allelic richness; Npa, number of private alleles standardized to sample size; M, Garza and Williamson’s M-ratio test.
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are in Hardy–Weinberg equilibrium and that there is linkage 
equilibrium within populations. Analyses were performed sep-
arately for each species using an admixture model with corre-
lated allele frequencies among groups. We ran 500 000 Markov 
chain Monte Carlo iterations after a burn-in of 100 000 itera-
tions for K values of 1–10, with ten repetitions for each K. The 
most probable value of K was determined with the method of 
Evanno et al. (2005) implemented in STRUCTURE Harvester 
(Earl, 2012). The matrices were adapted to the specific format 
of each of the programs using Transformer-4 (Caujapé-Castells 
et  al., 2013). Microsatellite matrices are available in the 
DEMIURGE information system (http://www.demiurge-pro-
ject.org/) with codes D-NMICR-122 (matrix of C. canarien-
sis) and D-NMICR-123 (matrix of C. eminii). To quantify the 
amount of genetic variance attributable to geographic and popu-
lation subdivision, a hierarchical analysis of molecular variance 
(AMOVA) was performed using the software ARLEQUIN v.3.0 
(Excoffier et al., 2005). Exploratory analyses were performed 
considering, alternatively, the individual populations in palaeo-
islands and sky islands separately, or grouped into geographic 
units as identified by STRUCTURE.

Demographic analysis

We used approximate Bayesian computation techniques as 
implemented in the software DIYABC v1.0.4.46beta (Cornuet 
et al., 2008, 2010) to statistically evaluate alternative scenarios 
for the demographic history of C. eminii and C. canariensis. 
DIYABC uses a coalescent framework to simulate complex 
evolutionary scenarios without the need to estimate the under-
lying likelihood function (Cornuet et al., 2008, 2010). Instead, 
simulated scenarios are summarized using variable estimates 
(summary statistics), which are then compared with observed 
values from the genetic data to estimate the posterior  probability 
of the model parameters using Bayesian inference, and to com-
pute measures of bias and precision for each scenario [95 % 
high posterior density (HPD) credibility intervals]. Due to the 
strong population structure observed in the two study species 
(Mairal et al., 2015b, 2017b) and the problems that can arise by 
assuming panmixia, we conducted separate analyses for each 
population, and we grouped only those populations that were 
geographically (<10 km) and genetically very close accord-
ing to the STRUCTURE results, i.e. Gifta and Dembecha 
 probably form an apomictic population, and were part of the 
same Afromontane forest patch, nowadays fragmented because 
of agriculture.

We considered four competing population history  scenarios: 
(1) a null model of constant population size; (2) a bottleneck in 
the past with subsequent recovery; (3) a demographic expan-
sion; and (4) a recent population decline without recovery 
(Fig.  1A). We assumed different effective population sizes 
for each historical scenario (Ne, N1, N3, N4). Table  2 shows 
the prior distributions of the demographic parameters for the 
four simulations, each simulating a change in the popula-
tion size. We assumed that each locus followed a generalized 
stepwise mutation (GSM) model for microsatellite markers 
(Estoup et al., 2002), using a log-uniform distribution for the 
 geometric distribution parameter (P = 10−1–30−1) and the muta-
tion rate (μ  = 10−4–10−3). In each of the tested scenarios, we 

simulated one million datasets and assumed absence of migra-
tion between populations. First, we estimated the posterior 
probability of each scenario by logistic regression, using the 
1 % simulated datasets with summary statistics that were clos-
est to the observed values. Bayesian credibility ranges (95 % 
HPD) of each simulated scenario were compared (Cornuet 
et al., 2008). We also estimated the posterior probability of the 
parameters from 1 % of the best-simulated datasets, using local 
linear regression and logit transformation of parameters. To 
make sure that the best scenario was not far off the observed 
data, we checked the goodness of fit by simulating 1000 data 
sets from the posterior predictive distribution of the parameter 
and compared SumStats with the observed data (Cornuet et al., 
2010; Budde et al., 2013).

Ecological niche modelling

We modelled the current climatic niche occupied by C. eminii 
and C. canariensis using extant occurrence data together with 
climatic maps. Data points were obtained from published mono-
graphs and inventories (Hedberg, 1961), three online databases 
(www.jardincanario.org/flora-de-gran-canaria, www.gbif.org 
and www.anthos.es) and data compiled through field trips. In all, 
we used 108 records for C. canariensis and 80 records for C. emi-
nii (Supplementary Data Tables  S2, S3), covering the entire 
distributional ranges of the species. Climatic data for current 
conditions were obtained from WorldClim (www.worlclim.org;  
Hijmans et al., 2005). For past climate scenarios we downscaled 
WorldClim data from a 30 arc-second resolution to 1 km reso-
lution and projected current and past climate conditions for sev-
eral periods after the Last Glacial Maximum, since the end of the 
deglaciation to the present (18, 10, 5 and 0 kiloyears; for more 
information see Espíndola et  al., 2012). Pleistocene sea-level 
changes [~18 kiloyears ago the sea levels were 110 m below the 
actual level (Rijsdijk et al., 2014)] strongly altered the surface 

Table  2. Prior distribution of demographic and historical 
 parameters used as summary statistics for simulations of popula-
tion size change in DIYABC (Fig. S1). Times of changes in effective 
population size are considered from the present (0) back in time: 
t1, t2, t3, t4. Mean μ is the mean mutation rate of microsatellites; 
Mean P is the mean of the geometric distribution parameter. All 
time events are expressed in numbers of generations. Conditions: 

N1 < Ne, N3 < Ne, N4 > Ne

Parameter Prior distribution

Ne Uniform (10–10 000)
t1 Uniform (1–10 000)
N1 Uniform (1–100)
t2 Uniform (1–10 000)
t3 Uniform (1–10 000)
N3 Uniform (1–100)
t4 Uniform (1–10 000)
N4 Uniform (4000–100 000)
Mean µ Log-uniform (1.00E−004 to 1.00E−003)
Mean P Log-uniform (1.00E−001 to 3.00E−001)

Ne, effective population size; N1 past  effective population size in a bottle-
neck scenario; N3, past effective population size in an expansion scenario; N4 
past effective population size in a decline scenario.
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area of the Canary Islands, and thus the extent of potentially suit-
able areas for C. canariensis. To account for these changes, we 
used a bathymetry layer and constructed new rasters using the 
sea levels modelled by Rijsdijk et al. (2014) and projected cli-
mate data, including sea levels (−110 m for 18 kiloyears, −46 m 
for 10 kiloyears, −4.7 m for 5 kiloyears). To model the distribu-
tions of the two species, we combined the available occurrences 
with a set of six bioclimatic variables that could be estimated 
for all past scenarios: total annual precipitation, maximum and 
minimum monthly precipitation, annual mean temperature, and 
maximum and minimum monthly temperature. Pseudoabsences 
were generated by selecting 5000 random points. We used 
ensemble modelling (Araújo and New, 2007) to generate our 
predictions. Three modelling techniques – generalized additive 
models (GAMs), the general boosting method (GBM) and ran-
dom forests (RF) – were run and summarized using R packages 
(R Core Team, 2014): biomod2 (Thuiller et al., 2013), foreign, 
raster (Hijmans and van Etten, 2016), SDMTools (VanDerWal 
et al., 2011), rms (Harrell, 2016), gbm (Ridgeway, 2015), gam 
(Hastie, 2016), rJava (Urbanek, 2010), dismo (Hijmans et al., 
2016) and randomForest (Liaw and Wiener, 2002) (references 
for R packages are given in the Supplementary Data; Mairal 
et al., 2017a). We used repeated split sampling to evaluate the 
performance of the models, successively splitting the dataset 
into 70 % for calibration and 30 % for evaluation by measuring 
the area under the curve (AUC).

RESULTS

Genetic diversity and population structure

Based on the nine SSR loci selected for C. canariensis and the 
six loci for C. eminii, we detected 54 and 23 alleles, respect-
ively, in the two species. The greatest number of private alleles 
in C.  canariensis was detected in populations from the three 
palaeo-islands of Tenerife (e.g. 0.37 in Camino Chamuscadas; 
0.25 in El Palmar; Table 1), which predate the age of the island 
in its current configuration. In C. eminii, the greatest number 
of private alleles was detected in populations from the Harar 
massif (0.33; Table 1). These Canarian and East African popu-
lations were inferred as sources of allele migration events in 
previous studies based on AFLP and chloroplast sequence data 
(Mairal et al., 2015b, 2017b). The average number of alleles per 
locus ranged from 1.67 to 4.07 in C. canariensis and from 1.58 
to 2.28 in C. eminii. Genetic diversity values, estimated as Nei’s 
heterozygosity (He), were relatively low compared with values 
generally obtained with microsatellite markers in endemic spe-
cies (He = 0.42; Nybom, 2004): 0.167–0.41 in C. eminii and 
0.235–0.489 in C. canariensis. Linkage disequilibrium was not 
significant (P > 0.05).

The method of Evanno et al. (2005) indicated that the most 
likely number of genetic groups was K = 2 for C. canariensis 
(ΔK = 1301) and K = 2 for C. eminii (ΔK = 108) (Supplementary 
Data Tables S4, S5, Fig. S2). A more complex genetic structure 
was revealed for C. canariensis by K = 4, delimiting two add-
itional groups [ΔK = 60 (Supplementary Data Table S4)]. In gen-
eral, populations of C.  canariensis displayed a clear east/west 
structure, with a stronger admixture within the islands of Tenerife 
and Gran Canaria (Fig. 2A). In C. eminii, the structure of K = 2 
supported a north/south division among populations (Fig. 2B).

Hierarchical AMOVA analyses showed the largest pro-
portion of genetic variation among groups, when each group 
was considered separately (23.22 % in C. eminii; 22.21 % in 
C.  canariensis; Supplementary Data Table  S6). Additionally, 
the STRUCTURE sublevels among groups (K = 2 for C. eminii 
and K = 2, K = 4 for C. canariensis) were consistent with the 
AMOVA analyses (Supplementary Data Table S6).

Population dynamics

All values for the GW test were M <0.68, the critical value 
below which populations are assumed to have suffered a recent 
population decline (with datasets of seven loci or more; Garza 
and Williamson, 2001). Though we could only reliably score 
six loci in C. eminii (see the Materials and methods section), 
the results of the demographic analysis (below) and the low val-
ues obtained with the GW test (Table 1) support a demographic 
decline in all populations of C. canariensis and C. eminii.

In both species, the ‘recent population decline’ scenario 
(Supplementary Data Fig. S1) was associated with the highest 
posterior probabilities and the narrowest 95 % HPD intervals in 
the DIYABC analysis (Table 3). For some populations, we could 
not discriminate among alternative hypotheses, as we did not 
obtain robust statistics for any given scenario [e.g. Gifta, Harenna, 
Yirga and La Gomera (Tamargada); Table 3, Supplementary Data 
Table S7]. The current estimated effective population size Ne was 
estimated between 500 and 1300 across populations, and was 
about two orders of magnitude smaller than the effective popula-
tion size before the decline. Population decline was estimated to 
have started ~2000–5000 generations ago.

Ecological niche modelling

Species distribution models indicated that the inferred poten-
tial distribution for the present largely coincided with the extant 
distribution of both species. The AUC values were generally high 
(with values of 0.71 and 0.96 for C. canariensis and C. eminii 
respectively), suggesting that the models are consistent. Our 
hindcast climate niche projections showed that the areas with 
favourable climatic conditions for C. eminii and C. canariensis 
experienced a reduction from the start of the deglaciation (around 
18 kiloyears ago) to the present (Fig. 3). Present projections show 
patches of climatic suitability (climatic refugia) that largely coin-
cide with the extant distribution of the species (Fig. 3).

DISCUSSION

Low genetic diversity and strong population structure in Canarina 
endemics

Population genetic theory predicts that species subject to habitat 
fragmentation, e.g. due to habitat loss, are more susceptible to 
stochastic demographic fluctuations, such as genetic bottlenecks 
or declines in effective population size. This is often accompa-
nied by an upward surge of inter-population genetic differentia-
tion, higher inbreeding and loss of genetic variability (Stebbins, 
1980; Kruckeberg and Rabinowitz, 1985; Lande, 1993), which 
can eventually drive a species to extinction. This ‘fragmentation 
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syndrome’ (Lande, 1993) seems to be evidenced in Canarina. 
Our ecological niche models indicate that both C.  eminii and 
C. canariensis have experienced a contraction of their climatic 
suitability areas since 18 kiloyears ago, which eventually led to 
the fragmented, patchy distribution observed today (Fig. 3). The 
low levels of genetic variability detected at the population level 
(Table 1) are in agreement with those obtained with other types 
of molecular marker (chloroplast DNA sequences and AFLPs; 
Mairal et al., 2015b, 2017b). They are also generally below those 
obtained with microsatellites in endemic species (Nybom, 2004), 
and specifically below those reported in other taxa distributed in 
the study areas (Table 4). Note, however, that comparing genetic 
statistics across distantly related phylogenetic groups is problem-
atic because their values can be influenced by taxon-specific bio-
logical differences (Gitzendanner and Soltis, 2000).

The loss of genetic diversity is also accompanied in Canarina 
by a large among-population differentiation (see AMOVA in 
Supplementary Data Table S6) and great genetic exclusivity in 
some populations, especially those that may have acted as refugia 
or genetic reservoirs in the past (e.g. the palaeo-islands of Tenerife 
or Mount Elgon in Kenya), though this diversity, detected also by 
AFLPs and plastid sequences, seems to be of older origin than the 
one reported here (Mairal et al., 2015b, 2017a).

In C. canariensis, our SSR analyses detected a strong popu-
lation structure akin to the one revealed by AFLPs and DNA 
sequences: an east/west genetic split, with the strongest dif-
ference found within Tenerife (Fig. 2A; Mairal et al., 2015b, 
2017a). The only difference is that SSRs detected higher levels 
of genetic admixture in the population of the paleo-island of 

Adeje than the other markers (Fig. 2A; this had been predicted 
in Mairal et al., 2015b). In C. eminii, SSRs detect a north/south 
genetic diversity structure, which was not detected by AFLPs 
or sequences (Mairal et  al., 2017b). This might reflect more 
recent population dynamics in agreement with similar contact 
patterns found in other Afromontane plants (Assefa et al., 2007; 
Masao et al., 2013). Alternatively, it could be an artefact of the 
lack of specificity in our SSR markers, which were designed 
for C. canariensis. Additionally, we found genetic admixture 
in Mount Elgon (Fig. 2B), which agrees well with its purported 
role as a crossroad among populations at both sides of the Rift 
Valley (Mairal et al., 2017b), and with the descent of vegetation 
belts during the Last Glacial Maximum (Chala et al., 2017).

Historical population declines in widespread rare species

The time lag between range reduction and the collapse of 
populations is known as ‘extinction debt’ (Tilman et al., 1994). 
Initially, if studies are conducted shortly after habitat loss has 
occurred, the evolutionary cost of the extinction debt is not obvi-
ous and thus difficult to detect (Triantis et al., 2010). Several 
generations are needed to detect the total impact of habitat loss 
and fragmentation (Tilman et  al., 1994; Tilman, 1999). This 
seems to be the case in Canarina: although this endemic genus 
of evergreen subtropical forests is still widely distributed in 
regions of East Africa and Macaronesia, it also shows a wor-
rying population decline scenario. Indeed, demographic analy-
ses based on SSRs (Tables 1 and 3) and ecological niche model 

Fig. 2. Results of the genetic structure analyses for (A) C. canariensis and (B) C. eminii. Histograms show the Bayesian clustering of individuals within  populations 
(STRUCTURE). Colours represent the individual proportion for each of the inferred Bayesian groups. All other conventions as in Fig. 1.
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projections (Fig. 3) suggest that both C. eminii and C. canarien-
sis underwent a strong and recent population decline.

When did this decline start and what were its causes? Our 
previous studies showed that the current disjunct distribution of 
genus Canarina across the Sahara Desert can be explained by 
the climatic aridification during the Late Miocene/Pliocene and 
the resulting contraction in the distribution ranges of subtropi-
cal forests in Africa and Macaronesia (Mairal et al., 2015a, b,  
2017a, b; Pokorny et al., 2015). Although this hypothesis may 
explain the current continental disjunction, the population 
decline detected here is probably more recent. The DIYABC 
analysis detected a population decline ~2000–5000 genera-
tions ago, which could not be recovered with coalescent-based 
Bayesian skyline plots (Drummond et al., 2005; Mairal et al., 
2015b). This is in agreement with observations that SSR mark-
ers detect more recent signals of genetic diversity than chloro-
plast DNA and AFLP markers (Chakraborty et al., 2014). Since 
the generation time of Canarina is not known precisely due to 
its tuberous habit (it can sometimes behave as a biennial or even 
show longer generation times), it is difficult to assign an abso-
lute temporal framework for this decline; also, the time scale 
here differed slightly depending on the population. However, 
the temporal range of the decline detected here was consist-
ent within the past 10 000 years (if we consider the plants as 

biennial) or 50 000 years (if we consider generation times of 
10 years), i.e. it probably took place during the last glacial cycle 
(Pleistocene–Holocene).

This decline coincides with palaeoclimate projections from 
our ecological niche models, which support a contraction of the 
distribution ranges of both species from 18 kiloyears ago to the 
present (Fig. 3). Caution should be exercised in the interpret-
ation of these models due to the low-resolution climate datasets 
available, which could underestimate potential microrefugia 
(Gavin et  al., 2014). However, though geographic locations 
may be biased, the models are highly congruent with the extant 
distribution of the species and furnish evidence of a population 
decline. Furthermore, a recent study (Chala et al., 2017) sup-
ports our models by projecting the descent of vegetation belts 
during the Last Glacial Maximum.

Interestingly, DIYABC detected a less pronounced popula-
tion decline in the populations with the highest levels of genetic 
diversity (Table 1 and N4 versus Ne in Table 3). These popula-
tions are located in areas that served as refugia during climatic 
oscillations or tectonic and volcanic events, such as Mount 
Elgon in Africa or the palaeo-islands of Tenerife, thereby sup-
porting their role as reservoirs of genetic diversity against 
extinction, both during the Pleistocene and in more recent times 
(Mairal et al., 2015b, 2017b; this study).

Table 3.  Results of DIYABC analyses. In each population the best supported scenario is indicated according to its posterior probability 
[PP; mean and 95 % Bayesian highest posterior density interval (HPD)], obtained by logistic regression from 1 % of the simulations 
that best approximate the observed values. NA (not available) is shown for populations for which it was not possible to discriminate a 

statistically robust scenario

Population Population No. of 
individuals

Best supported 
scenario

PP (HPD) Ne N4 t4  Neµmic

Canarina eminii, continental islands
 1.  Gifta and 

Dembecha
Abyssinian massif 16 NA − − − − −

 3. Yirga Harar massif 13 NA − − − − −
 4. Harenna Harar massif 9 NA − − − − −
 5. Aberdare Aberdare Mountains 8 Decline 0.7511 (0.6710, 0.8312) 5.17E+02 6.33E+E04 2.03E+03 9.73E−02
 6. Elgon Mount Elgon 8 Decline 0.6912 (0.6544, 0.7280) 5.35E+02 5.94E+E04 2.89E+03 1.39E−01
 7. Rwenzori Rwenzori Mountains 10 Decline 0.6986 (0.6631, 0.7342) 1.03E+03 5.84E+E04 3.56E+03 1.92E−01
Canarina canariensis, oceanic islands
 8. Cueva Corcho Gran Canaria 8 Decline 0.9293 (0.9066, 0.9519) 5.50E+02 6.59E+E04 1.72E+03 9.91E−02
 9. Tilos de Moya Gran Canaria 12 Decline 0.9400 (0.7882, 1.0000) 6.60E+02 6.33E+E04 2.01E+03 1.22E−01
 10. El Sao Gran Canaria 10 Decline 0.3902 (0.3325, 0.4478) 6.83E+02 5.11E+E04 4.51E+03 1.05E−01
 11.  Andenes de 

Guayedra
Gran Canaria 12 Decline 0.6930 (0.6497, 0.7363) 5.00E+02 5.77E+E04 2.90E+03 9.07E−02

 12.  Camino 
Chamuscadas

Tenerife (Anaga) 10 Decline 0.5972 (0.5646, 0.6298) 1.25E+03 5.06E+E04 4.96E+03 4.01E−01

 13. El Bailadero Tenerife (Anaga) 11 Decline 0.9265 (0.7775, 1.0000) 1.03E+03 6.07E+E04 4.02E+03 2.10E−01
 14.  Tope del 

Carnero
Tenerife (Anaga) 7 Decline 0.6000 (0.1706, 1.0000) 1.40E+03 7.48E+E03 3.51E+03 2.78E−01

 15. Teno Alto Tenerife (Teno) 8 Decline 0.9523 (0.9360, 0.9686) 1.06E+03 6.90E+E04 2.87E+03 2.09E−01
 16. El Palmar Tenerife (Teno) 8 Decline 0.9511 (0.9354, 0.9668) 1.34E+03 6.25E+E04 3.46E+03 2.61E−01
 17.  Barranco del 

Infierno
Tenerife (Adeje) 11 Decline 0.9940 (0.9880, 1.0000) 9.31E+02 6.89E+E04 1.87E+03 1.73E−01

 18.  Barranco de 
Badajoz

Tenerife 5 Decline 0.8499 (0.8096, 0.8902) 7.41E+02 6.65E+E04 3.39E+03 1.56E−01

 19. Barranco Ruiz Tenerife 6 Decline 0, 8775 (0.8423, 0.9127) 8.70E+02 6.18E+E04 2.35E+03 1.45E−01
 20. Tamargada La Gomera 13 NA − − −  − −
 21. Los Tilos La Palma 10 Decline 0.8024 (0.7579, 0.8469) 9.00E+02 5.07E+E04 2.83E+03 1.64E−01
 22.  Barranco del 

Agua
La Palma 10 Decline 0.7253 (0.6768, 0.7738) 7.70E+02 5.71E+E04 2.37E+03 1.43E−01

 24. El Hierro El Hierro 12 Decline 0.7498 (0.6942, 0.8054) 9.18E+02 5.43E+E04 2.44E+03 1.51E−01

Ne, current effective population size; N4, effective population size at the beginning of the decline; t4, start time of decline, measured in number of generations; 
Neμmic, current effective population size × micros mutation rate.
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By contrast, a much sharper decline is observed in the 
most fragmented laurel forest populations in the Canaries, i.e. 
Barranco de Badajoz and Barranco Ruiz in Tenerife (Table 3). 
In C. eminii, the sky islands located at lower latitudes (Rwenzori 
Mountains, Mount Elgon, Aberdare Mountains) harbour greater 
genetic diversity than populations in the massif of Abyssinia, 
which were probably more strongly affected by glaciations and 
human activities (e.g. Gifta and Dembecha in Table 1; cf. Mairal 
et al., 2017b). Loss of ecological interactions in these areas, such 
as deficiency of pollinators, may also have had a direct impact 
on genetic diversity in rare species (Lavergne et al. 2004).

Conservation biology of Canarina

Our ecological niche models may render an approxima-
tion of the effect of climate change on habitat loss and the 

associated loss of genetic diversity during the last glacial/inter-
glacial cycles. Nowadays, however, human activities constitute 
an additional threat to the maintenance of genetic diversity in 
Canarina. Afro-Macaronesian forests have been logged in the 
past centuries for timber, agriculture and human settlements, 
bringing them to the verge of extinction, especially in topo-
graphically less complex areas, which are more easily exploited.

At present, the Afromontane forests have disappeared almost 
entirely from the Ethiopian highlands (estimated loss of up 
to of 35 % of originally forested areas) (EFAP, 1994; Kebede 
et al., 2007). This situation is aggravated by the decrease in soil 
quality due to changes in water resources (Kloos and Legesse, 
2010), which has caused a dramatic decline in these forests, and 
even their disappearance in large areas (Reusing, 2000; FAO, 
2001).

In the Canary Islands, the area of laurel forests has 
recently declined to 12.5 % of their potential distribution 
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Fig. 3. Geographic projections of the climatic niche model of (A) Canarina eminii and (B) Canarina canariensis over four time periods: 18, 10, 5 and 0 kiloyears 
(ky) (modelling sea-level changes). Colour scale indicates climatic suitability values; brown colour indicates low values and dark green indicates high values.
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(Fernández-Palacios et  al., 2011); this includes the laurel for-
est contractions of Gran Canaria and Tenerife to 1 % and 10 %, 
respectively, of their original distributions (Santos Guerra, 1990; 
Del Arco et al., 2010; Fernández-Palacios et al., 2011). The areas 
of adjacent suitable areas, such as thermophilous woodlands, 
have also declined considerably (de Nascimento et al., 2015).

One of the biggest threats to rare widespread species is the 
sensitivity of their populations to demographic stochastic-
ity (Kruckeberg and Rabinowitz, 1985; Barrett et  al., 1991). 
This could be a critical factor for the survival of Canarina in 
African and Macaronesian evergreen forest habitats, given the 
detected current decline in size of many populations (Table 3). 
Furthermore, the generally low levels of genetic diversity 
detected here make these taxa more susceptible to the effects 
of inbreeding (especially in small populations). Intraspecific 
genetic variation is the most fundamental level of biodiversity, 
providing the basis for evolutionary change, and is crucial for 
maintaining the capacity of species to adapt to new environ-
mental conditions (Frankham et al., 2002; Yannic et al., 2013).

Although C. canariensis is locally abundant in some areas 
(e.g. Anaga, Teno and Tilos de Moya), greater efforts should 
be made to protect populations that contain exclusive genetic 
diversity. This is the case for populations in the three palaeo-
islands of Tenerife (which also harbour pristine areas of lau-
risilva) and of Mount Elgon in the case of C.  eminii. These 
areas act not only as reservoirs of unique genetic diversity, but 
also as cradles and sources of new allele migration events to 
nearby areas (Mairal et  al., 2015b, 2017b; Caujapé-Castells 
et al., 2017). Though the results reported here refer only to two 
rare species (C. eminii and C. canariensis), similar patterns are 
expected (and have been observed) in other rare species, e.g. the 
Afroalpine plant Lobelia rhynchopetalum (Chala et al., 2016).

At present, a large area covered by the endemic laurel for-
est (laurisilva) across the Canary Archipelago is under legal 

protection (Fernández-Palacios et al., 2011), but this is not the 
case for the isolated patches of Afromontane forests in East 
Africa. Though some areas are preserved as National Parks (e.g. 
Harenna Forest, Rwenzori Mountains and Mount Elgon), con-
servation measures are not strictly enforced. Given the political 
and difficult economic situation of these countries, which makes 
it even more challenging to extend protection areas to preserve 
new populations, one crucial action in this current context would 
be ex situ conservation, via seed banks. Priority should be given 
to the conservation of the different geographically structured 
areas, covering in each of them those populations exhibiting 
the highest levels of ancient and endemic phylogenetic diver-
sity. Genetic evidence gathered for Canarina (DNA, AFLPs and 
SSRs) further suggests that certain populations should be estab-
lished as shrine areas in order to conserve the greater genetic 
variation ex situ: in the case of C. eminii, one population at each 
side of the Rift Valley and the population of Mount Elgon; for 
C. canariensis, one population in each palaeo-island in Tenerife 
(home to the best-preserved areas of laurisilva in Tenerife). Ex 
situ conservation plans should collect seeds covering these pri-
ority areas and avoid gene flow among them in order to favour 
potential speciation in the future. Thus, while the different areas 
should be managed separately (avoiding mixed reinforcements, 
i.e. without introducing propagules from different source areas), 
management within areas should stress the preservation of sev-
eral populations, in order to safeguard a significant proportion of 
genetic variability of the species.

CONCLUSIONS

Genetic conservation studies often focus on rare species with 
a reduced distribution area (‘narrow endemics’; Kruckeberg 
and Rabinowitz, 1985; Oostermeijer et al., 2003; Fernández-
Mazuecos et al., 2014). However, geographically widespread 

Table 4. Average values of microsatellite diversity statistics for several species studied in the Canary Islands and Afromontane forests

Species A He Reference

Canary Islands
 Canarina canariensis 2.5 0.367 –
 Bencomia exstipulata 3.50 0.440 González-Pérez et al., 2009a
 Bencomia caudata 5.13 0.620 González-Pérez et al., 2009a
 Myrica rivas-martinezii 6.50 0.560 González-Pérez et al., 2009b
 Neochamalea pulverulenta 7.85 0.425–0.812 Rigueiro et al., 2009
 Myrica faya 9.30 0.570 González-Pérez et al., 2009b
 Olea europaea subsp. guanchica 14.00 0.710 García-Verdugo et al., 2010
 Ilex perado subsp. lopezlilloi 2.13 0.480 Sosa et al., 2010a
 Ilex perado subsp. platyphylla 5.37 0.600 Sosa et al., 2010a
 Ilex canariensis 2.38 0.420 Sosa et al., 2010a
 Sambucus palmensis 6.80 0.499 Sosa et al., 2010b
 Silene nocteolens 15.83 0.780 Sosa et al., 2010a
 Pinus canariensis 22.80 0.771 López de Heredia et al., 2010
 Parolinia ornata 4.38 0.515 González-Pérez and Caujapé-Castells, 2014
 Ruta oreojasme 7.62 0.687 Meloni et al., 2015
 Phoenix canariensis 4.41 0.476 Saro et al., 2015
 Micromeria rivas-martinezii 9.80 0.500 Puppo et al., 2016
 Micromeria glomerata 4.27 0.310 Puppo et al., 2016
Afromontane forests
  Canarina eminii 1.93 0.300 –
  Coffea arabica 2–3.20 0.050–0.242 Silvestrini et al., 2007
  Acacia senegal 6.90 0.667 Omondi et al., 2010
 Senegalia mellifera 7.00 0.620 Ruiz Guajardo et al., 2010
 Prunus africana 2.0 – 4.00 0.105–0.728 Kadu et al., 2011

A, allelic richness.
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species can also be considered rare (relict) and subject to the 
same status of threat, especially if habitat loss has led to iso-
lation of populations and small population size (‘large size 
and narrow distribution’; Kruckeberg and Rabinowitz, 1985). 
Here we show that this is the case for C. eminii and C. canar-
iensis, two endemic bellflower species associated with the 
last remnants of subtropical forest in Africa and Macaronesia. 
Although both are locally widespread (C.  canariensis is pre-
sent in most of the Canarian islands and C. eminii occurs over 
a large part of East Africa), they feature the genetic signals of 
recent population decline due to habitat loss. The latter seems to 
be an effect of both historical climate change and rapid, human-
induced, forest fragmentation in recent times. Especially for the 
Afromontane forests, loss of habitat due to increasing aridity 
and the alarming rates of forecast urban growth make these 
threatened ecosystems areas of priority interest for the conser-
vation community (Seto et al., 2012).
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